博禾医生官网

头条资讯

查疾病 找医生 找医院

为啥越累越想睡?《Nature》最新发现:线粒体 “喊累” 时,睡眠就来了

医语暖心 发布时间:2025-08-25 11:30 1510次浏览
关键词:睡眠

2025年7月16日最新发表在顶级期刊《Nature》杂志上的研究揭示,睡眠的本质可能是细胞“发电厂”线粒体的“维修时间”。当线粒体功能异常,睡眠压力就会如潮水般涌来;而睡眠,正是线粒体修复损伤、重获活力的关键过程。本期小编就带您详细解析这篇高质量研究。

一、“细胞发电厂”的困境:线粒体为何与睡眠绑定?

在我们的细胞里,线粒体就像一座微型发电厂,通过有氧代谢将食物中的能量转化为ATP(细胞的“能量货币”),支撑着生命活动的每一个瞬间。这个过程的核心是电子传递链——一系列蛋白复合体像接力赛一样传递电子,最终将氧气转化为水,同时产生ATP。

但这座“发电厂”并非永远稳定。当我们清醒时,大脑神经元处于活跃状态,线粒体的电子传递需求激增。研究以果蝇为模型发现,大脑中有一种专门调控睡眠的神经元——背扇形体投射神经元(dFBNs),它们对线粒体的“疲惫”格外敏感。

清醒时间越长,dFBNs的线粒体就越容易陷入困境:电子传递链中,电子的“供应”超过了ATP合成的“需求”,多余的电子会泄漏出来,与氧气结合产生活性氧(ROS)。这些ROS就像“电火花”,会损伤线粒体膜上的脂质,破坏线粒体结构。为了应对这种损伤,线粒体开始“自我拆解”——原本完整的线粒体分裂成碎片,这是一种紧急应激反应,就像工厂出故障时先停机拆解零件。

与此同时,dFBNs的基因表达也发生了显著变化:与线粒体呼吸、ATP合成相关的基因被强烈激活,仿佛在紧急招募“维修人员”;而与突触传递相关的基因则被抑制,就像暂时关闭非必要功能,集中资源应对危机。这种基因表达的“倾斜”,是睡眠压力上升的分子信号。

图线粒体功能异常(如ATP供需失衡、ROS积累)驱动睡眠压力

二、睡眠:线粒体的“维修与重启”程序

当线粒体的“困境信号”积累到一定程度,我们就会感到难以抗拒的睡意——这其实是身体在提醒:该给线粒体“检修”了。研究发现,睡眠正是线粒体修复损伤、恢复功能的关键过程,主要通过三个步骤完成:

1.清理受损部件:线粒体自噬激活

睡眠剥夺后,dFBNs中会出现大量碎片化的线粒体,其中不乏受损严重的“废件”。睡眠期间,细胞会启动线粒体自噬(mitophagy)机制,清理受损线粒体,就像给工厂配备了“垃圾清运车”。研究通过荧光标记观察到,睡眠剥夺后dFBNs的线粒体自噬水平显著升高,而经过恢复睡眠后,这些受损线粒体被大量清除。

2.重建完整结构:线粒体融合修复

清理完“废件”后,线粒体需要重新组装成完整、高效的“发电单元”。睡眠期间,线粒体的融合机制被激活:原本碎片化的线粒体通过融合蛋白(如Opa1、Marf)重新连接,恢复体积和分支结构。实验显示,恢复睡眠后,dFBNs的线粒体体积、分支长度会反弹至正常水平以上,甚至比清醒时更“强壮”。

3.平衡能量代谢:电子传递链重置

睡眠的核心作用,是解决清醒时积累的“电子供需失衡”。清醒时,dFBNs因神经元受抑制而消耗ATP减少,导致电子传递链中电子“堆积”;而睡眠时,dFBNs的神经元兴奋性恢复,ATP消耗增加,电子传递链重新达到平衡,减少ROS产生。研究证实,只要打破这种失衡,即使不睡觉,线粒体的损伤也会减轻,睡眠压力也会随之缓解。

三、操控线粒体,就能控制睡眠?

为了验证线粒体与睡眠的直接关联,研究人员做了一系列“线粒体手术”:

促进线粒体裂变:通过过表达裂变蛋白Drp1,让dFBNs的线粒体持续处于碎片化状态。结果发现,果蝇的睡眠时间显著减少,即使被强制熬夜,也不会出现睡眠反弹(即“补觉”行为)。

促进线粒体融合:反之,通过敲低Drp1或过表达融合蛋白Opa1,让线粒体保持“完整状态”,果蝇的睡眠需求明显增加,觉醒阈值升高(更难被叫醒)。

修复电子传递链:当给线粒体安装“电子安全阀”,多余的电子可以被安全消耗,减少ROS产生。这时,即使睡眠被剥夺,线粒体碎片化也会减轻,果蝇的睡眠压力显著降低。

这些实验清晰地证明:线粒体的形态和功能状态,直接决定了睡眠的需求和时长。当线粒体“健康”,睡眠压力就小;当线粒体“受损”,就必须通过睡眠来修复——这正是“睡眠压力的线粒体起源”的核心逻辑。

图2线粒体形态异常是睡眠压力产生的关键中间步骤

四、基于3个核心机制,如何帮线粒体“减负”?

既然线粒体健康与睡眠质量息息相关,那我们能否通过营养手段呵护线粒体,让它少“喊累”?近年来的研究发现,一些天然成分能针对性改善线粒体功能,或许能成为睡眠的“好帮手”。

1.尿石素A:给线粒体“大扫除”

尿石素A的核心作用是促进线粒体自噬,研究显示,尿石素A能激活细胞清理受损线粒体的机制,减少碎片化线粒体的积累。对于睡眠不足的人来说,补充尿石素A可能帮助减轻线粒体损伤,缓解睡眠压力带来的疲劳感。这与果蝇实验中“恢复睡眠激活线粒体自噬”的机制不谋而合。

2.PQQ(吡咯喹啉醌):催生“新发电厂”

PQQ的核心作用是刺激线粒体的生物合成。PQQ可以通过激活相关基因让细胞“建造新工厂”,增加新线粒体数量。这与果蝇dFBNs在睡眠中“线粒体基因上调、修复形态”的过程类似,能从根源上增强线粒体的“发电能力”。

3.辅酶Q10:稳定“电子传递链”

辅酶Q10是线粒体电子传递链中不可或缺的“电子载体”,就像传递能量的“传送带”。在果蝇实验中,电子传递链失衡是睡眠压力的核心诱因;而辅酶Q10能增强电子传递效率,减轻线粒体损伤。对于因线粒体功能下降导致的睡眠问题(如老年人入睡困难),补充辅酶Q10可通过稳定电子传递链,降低睡眠压力。

五、睡眠:有氧代谢的“必然代价”

从果蝇到人类,有氧代谢为生命提供了高效能量,但也埋下了“隐患”——电子传递链的失衡和线粒体损伤,是有氧生物无法避免的代价。研究指出,睡眠与衰老类似,都是有氧代谢的“必然结果”:就像机器运转久了需要保养,线粒体在日复一日的“发电”中积累损伤,也需要保养。而好好睡觉,给线粒体足够的修复时间,或许就是最简单也最有效的健康投资。毕竟,细胞深处的线粒体健康了,我们的生命活力才能如源源不断的电流,支撑起每一个清醒的日子。

参考文献:Raffaele Sarnataro,Cecilia D.Velasco,et al.Mitochondrial origins of the pressure to sleep.Nature(2025)

免责声明:本页面信息为第三方发布或内容转载,仅出于信息传递目的,其作者观点、内容描述及原创度、真实性、完整性、时效性本平台不作任何保证或承诺,涉及用药、治疗等问题需谨遵医嘱!请读者仅作参考,并自行核实相关内容。如有作品内容、知识产权或其它问题,请发邮件至suggest@fh21.com及时联系我们处理!

相关推荐

相关问答